MA281: Introduction to Linear Algebra

Baker University — Fall 2023

Unless otherwise noted, each of the following sections comes from the textbook *Linear Algebra* (Third Edition) by John B. Fraleigh and Raymond A. Beauregard.

Exam 1: Vectors and Matrices

date	day	section	$\operatorname{topic}(s)$
		§1.1: Vectors in Euclidean Space	• vector notation
8/23	W		\circ vector algebra
			\circ properties of vectors
	F	§1.2: The Norm and the Dot Product	• vector magnitude
0 /95			\circ unit vectors
0/20			\circ vector dot product
			\circ angles between vectors

date	day	section	$\operatorname{topic}(s)$
			\circ matrix addition
Q / 9Q	м	81.2. Matrices and Their Alcohra	\circ matrix multiplication
0/20	111	g1.5: Matrices and Their Algebra	\circ scalar multiplication
			\circ matrix transposition
		u §1.4: Solving Systems of Linear Equations	\circ elementary row operations
8/20	Tu		\circ row-echelon form
0/29			\circ reduced row-echelon form
			\circ Gaussian Elimination
\$ /20	W	81.4. Solving Systems of Linear Equations	• elementary matrices
0/30	vv	W g1.4. Solving Systems of Linear Equations	\circ row equivalence
0/1	Б	F §1.5: Inverses of Square Matrices	• invertible matrices
9/1	Г		\circ computation of inverses

date	day	section	$\operatorname{topic}(s)$
9/4	М	Labor Day	
			• vector subspaces
9/5	Tu	§1.6: Homogeneous Systems, etc.	\circ span and linear combinations
			\circ basis of a vector space
9/6	W	W §1.6: Homogeneous Systems, etc.	\circ row space of a matrix
			\circ column space of a matrix
			∘ span
9/8	F	F §2.1: Independence and Dimension	\circ linear independence
			\circ determination of bases

date	day	section	topic(s)
			\circ row rank
9/11	М	§2.2: The Rank of a Matrix	\circ column rank
			\circ Rank-Nullity Theorem
			\circ determinants
9/12	Tu	§4.1: Areas, Volumes, and Cross Products	\circ area of a parallelogram
			\circ the vector cross product
0/13	W	84.1. Arong Volumos and Cross Products	\circ volume of a box
5/15	vv	g4.1. Areas, volumes, and cross rioducts	\circ properties of cross product
			\circ determinants
9/15	F	84.2. The Determinant of a Square Matrix	\circ minors of a matrix
	T,	r 94.2. The Determinant of a Square Matrix	\circ cofactors of a matrix
			\circ adjugate of a matrix

date	day	section	topic(s)
0/18	м	§4.3: Computations of Determinants, etc.	\circ properties of determinants
9/10			\circ computing determinants
0/10	T .	Tu §4.3: Computations of Determinants, etc.	\circ computing the adjugate
9/19	l		\circ computing matrix inverses
9/20	W	Exam I Review	
9/22	F	Exam I Review	

date	day	section	$\operatorname{topic}(s)$
9/25	М	Exam I Review	
9/26	Tu	Exam I	

Exam 2	: Eigenva	lues, Eigen	vectors, and	Canonical	Forms
--------	-----------	-------------	--------------	-----------	-------

date	day	section	$\operatorname{topic}(s)$
	W	Characteristic and Minimal Polynomials	• characteristic matrix
9/27			\circ characteristic polynomial
			\circ minimal polynomial
0/20	Б	Characteristic and Minimal Dalemanials	\circ computing the polynomials
9/29	F	F Characteristic and Minimal Polynomials	\circ relating the polynomials

date	day	section	$\operatorname{topic}(s)$
10/2	м	§5.1: Eigenvalues and Eigenvectors	\circ properties of eigenvalues
10/2	111		\circ computing eigenvalues
10/3	Tu	85.1. Figonvalues and Figonvectors	\circ properties of eigenvectors
10/5	Iu	go.1. Eigenvalues and Eigenvectors	\circ computing eigenvectors
10/4	117	§5.2: Diagonalization	\circ diagonalizability
10/4	10/4 W		\circ form of a diagonalizable matrix
10/6	F §5.2: Diagonalization	\circ orthogonal matrices	
10/0		F §5.2: Diagonalization	\circ orthonormal matrices

date	day	section	topic(s)
			\circ the characteristic polynomial
10/9	М	The Cayley-Hamilton Theorem	\circ the minimal polynomial
			\circ a proof of Cayley-Hamilton
10/10	Τ.	Tu The Smith Normal Form	\circ the characteristic matrix
	Iu		\circ computing the Smith Normal Form
10/11	117	W The Smith Normal Form	\circ elementary divisors
10/11	vv		\circ invariant factors
10/13	F	Fall Break	

date	day	section	$\operatorname{topic}(s)$
10/16	М	M The Petienel Canonical Form	\circ invariant factors
10/10	0/16 M The Rational Can	The Rational Canonical Form	\circ companion matrices
10/17	Tu	The Rational Canonical Form	\circ computing Rational Canonical Form
10/19	8 W The London Cononical Form		\circ elementary divisors
10/10	vv	The Jordan Canonical Form	\circ Jordan blocks
10/20	F	The Jordan Canonical Form	\circ computing Jordan Canonical Form

date	day	section	$\operatorname{topic}(s)$
			\circ diagonalizability
10/23	М	Review of Canonical Forms	\circ diagonal matrices
			\circ block-diagonal matrices
		Tu Review of Canonical Forms	• Smith Normal Form
	Tu		\circ invariant factors
10/24			\circ elementary divisors
			\circ Rational Canonical Form
			 Jordan Canonical Form
10/25	W	Exam II Review	
10/27	F	Exam II Review	

date	day	section	topic(s)
10/30	М	Exam II Review	
10/31	Tu	Exam II	

Exam 3: Vector Spaces and Linear Transformations

date	day	section	$\operatorname{topic}(s)$
	W		\circ functions
11/1		\$2.2. Lincon Transformations of Euclidean Spaces	\circ linearity
11/1		gz.3. Emear fransformations of Euclidean Spaces	\circ properties
			\circ subspaces
11/3 F		§2.3: Linear Transformations of Euclidean Spaces	\circ rank and nullity
	F		\circ matrices
			\circ invertibility

date	day	section	topic(s)
11/6	М	83 1. Voctor Spaces	\circ vector space definition
11/0		35.1. Vector spaces	\circ vector space examples
11/7	Tu	83 1. Voctor Spaces	\circ vector space properties
11/1	Iu	35.1. Vector spaces	\circ vector subspaces
11/8	W	§3.2: Basic Concepts of Vector Spaces	◦ span
			\circ linear independence
			\circ subspace tests
			\circ vector space dimension
11/10	F	83.3. Coordinatization of Voctor Spaces	◦ ordered bases
	T,	30.0. Coordinatization of vector spaces	\circ coordinate vectors

date	day	section	$\operatorname{topic}(s)$
			• matrix representation
11/13	М	§7.2: Matrix Representations and Similarity	\circ similarity of matrices
			\circ change of basis
			\circ properties
			\circ injectivity
11/14	Tu	§3.4: Linear Transformations	\circ surjectivity
			\circ subspaces
			\circ further examples
			• Vector Dot Product
11/15	W	§3.5: Inner Product Spaces	• Matrix Dot Product
			\circ further examples
			• properties
11/17	F	F §3.5: Inner Product Spaces	• Triangle Inequality
			• Cauchy-Schwarz

date	day	section	topic(s)
11/20	М	Exam III Review	
11/21	Tu	Exam III Review	
11/22	W	Thanksgiving Break	
11/24	F	Thanksgiving Break	

date	day	section	topic(s)
11/27	М	Exam III Review	
11/28	Tu	Exam III	

Final Exam Review

date	day	section	topic(s)
11/29	W	Final Exam Review	
12/1	F	Final Exam Review	

date	day	section	topic(s)
12/4	М	Final Exam Review	
12/5	Tu	Final Exam Review	
12/6	W	Final Exam Review	
12/8	F	Final Exam Review	

Final Exam: Monday, December 11 from 3:00 to 6:00 PM in Mulvane 409